
International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 104

Let Us Build a MQTT Pub-Sub Client In C#

For IoT Research

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: drsudip.robotics@gmail.com
2 Senior Professor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Area/Section: Computer Science.

Type of the Paper: Experimental Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed in: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.10603409

Google Scholar Citation: IJMTS

International Journal of Management, Technology, and Social Sciences (IJMTS)

A Refereed International Journal of Srinivas University, India.

CrossRef DOI: https://doi.org/10.47992/IJMTS.2581.6012.0334

Received on: 20/01/2024

Published on: 02/02/2024

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0

International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the SP. The SP disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Chakraborty, S. & Aithal, P. S. (2024). Let Us Build a MQTT Pub-Sub Client In C# For

IoT Research. International Journal of Management, Technology, and Social Sciences

(IJMTS), 9(1), 104-114. DOI: https://doi.org/10.5281/zenodo.10603409

http://www.supublication.com/
mailto:drsudip.robotics@gmail.com
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.10603409
https://scholar.google.com/citations?user=bphF0BQAAAAJ
https://search.crossref.org/search/works?q=10.47992%2FIJMTS.2581.6012.0334&from_ui=yes
https://doi.org/10.5281/zenodo.10603409

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 105

Let Us Build a MQTT Pub-Sub Client In C# For IoT

Research

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: drsudip.robotics@gmail.com
2 Senior Professor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: MQTT stands for Message Queuing Telemetry Transport. It is a lightweight protocol

specifically designed for IoT applications. Nowadays, most IoT projects exchange sensor data

over the MQTT protocol. It is simple to integrate and can run on low hardware resources. To

test MQTT, the researcher needs MQTT publisher subscriber client software. There are several

free and paid software available on the web. But sometimes, researchers need some custom

interface or functionality not available in the free version. The paid version demands vast

amounts of money for customization. Occasionally, they want to avoid customization for

specific projects. Here, we provide a procedure to create our MQTT pub-sub client software

interface, which the researcher can easily customize. The project is available to download.

Methodology/Approach: We installed Microsoft Visual Studio in our working system. Using

C# language, we create a GUI (graphical user interface). Inside the GUI, we segregate the

info into two. The left is for publishing clients, and the right is for subscribing clients. We

installed the M2MQTT package using the NuGet package manager to communicate with the

MQTT broker.

Findings/Result: Using our built application, we test to exchange the sensor data between two

clients. We found the data exchanged in almost real-time. In a couple of scenarios, we

observed that the data propagation could have been faster when we set the update interval

below 500 milliseconds. There may be a network delay, or the MQTT broker we used is a free

service. It may be the limited capacity of the accessible mode of the server we used. If the

application is not time-critical, we can utilize this communication route to exchange the sensor

data.

Originality/Value: Every day, new researchers are introduced to the IoT field and integrate

MQTT into their projects. They feel one customizable software they can use according to their

project requirements. So, using this project, the researcher can fulfill their need. The code is

freely available on the web. And scope to customize. This project provides value to them.

Type of Paper: Experimental-based Research.

Keywords: MQTT pub-sub client in C#, MQTT protocol in C#, MQTT Debugger in C#

1. INTRODUCTION :

Problem statement: The IoT is well known now. The popular protocol in the field of IoT is MQTT.

To debug the sensor data transmission, we need an MQTT debugger. Plenty of free and paid software

versions are available to debug the protocol over the net. Our researcher mainly uses the accessible

version of the MQTT debugger. There are several limitations available inside that application.

According to our experience, sometimes our researchers need extra information from the application

interface for their research work. So, we realized that we needed to build our custom mqtt debugger,

fully customized to our project’s needs. Here, we demonstrate such a custom MQTT GUI for the

researcher.

Indication of methodology: We used C# language with a Desktop form application to build the

software. A model view controller is the best architecture for building a GUI. The paper [14] provides

a detailed description of how to build complete software using MVVM architecture. The MVVM is the

http://www.supublication.com/
mailto:drsudip.robotics@gmail.com
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.7538711

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 106

best for large-scale projects. We make this utility software in C# desktop applications to better

understand the new researcher. On the GUI, we added a couple of user controls. We add the M2MQTT

package using the Nuget package manager to handle the MQTT communication.

Essential findings of others in this field: Much research is carried out in IoT, especially the MQTT

protocol. Nowadays, this protocol is the backbone of the IoT. The paper (Velinov et al. (2019). [1])

demonstrates the MQTT-based Internet of Things. There is a lot of ongoing research work. Need

benchmarking. Longo et al. (2022) [2] research the benchmarking framework for distributed MQTT

brokers. Hästbacka et al. (2022) [3] demonstrate the Interoperability of OPC UA PubSub with existing

message broker integration architectures. A couple of sound research studies, like Gültunca et al. (2018)

[7], examine and compare the communication protocols on the application layer in IoT. Chakraborty et

al. (2022) [11-30] demonstrate the application of IoT in their various research work.

What study is done in this paper: we create an MQTT pub-sub client using c# language. Using the

application, we tested the available free MQTT broker. Not all brokers' performance is fast responsive.

A few brokers are good and provide near real-time data between pub and sub-client nodes or devices.

When we tested the broker performance, we noticed several scopes needing improvement in the

available MQTT debugger. We listed most of the features we implemented in this research work. The

researcher can try the features and add more to their work using the provided code.

Principal conclusion: several research works are focused on the MQTT protocol, the primary

communication of IoT integration. The researcher needs to debug the MQTT protocol-enabled device.

They should have a good protocol analyzer to conduct an in-depth study of this protocol. The available

software suffers several drawbacks, and it is discouraging to use them. Through this research work, we

developed good handy tools for the researchers working on the MQTT protocol.

2. REVIEW OF LITERATURE/ CURRENT STATUS :

An unmeasured amount of research work has been carried out on MQTT. Here, we included some

research projects where we found noticeable work already done. Table 1 lists a couple of research works

and used technology.

Table 1: The list of research work and used technology

S. No. Focus/Subject Technology/Algorithm/

Module/Components

Reference

1 Covert channels in the MQTT-based Internet

of Things

IoT, MQTT Velinov et al.

(2019). [1]

2 A benchmarking framework for distributed

MQTT brokers

MQTT Longo et al.

(2022). [2]

3 Interoperability of OPC UA PubSub with

existing message broker integration

architectures

MQTT Hästbacka et al.

(2022). [3]

4 Modeling Distributed MQTT Systems Using

Multicommodity Flow Analysis

MQTT Manzoni et al.

(2022). [4]

5 Reflection-based Prototyping Framework for

OPC UA Servers for Companion

Specifications

OPC UA Servers Walker et al.

(2023). [5]

6 MQTT protocol employing IOT-based home

safety system with ABE encryption

IoT, MQTT Gupta et al.

(2021). [6]

7 Examination and comparison of the

communication protocols on the application

layer in IoT

MQTT, IoT Gültunca et al.

(2018). [7]

8 Investigating messaging protocols for the

Internet of Things (IoT)

IoT Al-Masri et al.

(2020). [8]

9 Towards network-assisted publish-subscribe

over wide area networks

WAN, MQTT Chang et al.

(2020). [9]

http://www.supublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 107

10 A semantic publish-subscribe architecture

for the Internet of Things

IoT, MQTT Roffia et al.

(2016). [10]

In the table below, we included several research works based on communication technology. The below

research work might be helpful for the new researcher for their research work.

Table 2: lists the author’s research on IoT and the MQTT field.

S. No. Focus/Subject Technology/Algorithm/

Module/Components

Reference

1 A Practical Approach To GIT Using

Bitbucket, GitHub, and SourceTree

Bitbucket and GitHub

website. SourceTree

windows application

Chakraborty et al.

(2022). [11]

2 How to make IoT in C# using Sinric Pro C# language. Sinric Pro

IoT website

Chakraborty et al.

(2022). [12]

3 Virtual IoT Device in C# WPF Using Sinric

Pro

Sinric Pro IoT website,

C# WPF framework

Chakraborty et al.

(2022). [13]

4 MVVM Demonstration Using C# WPF C# MVC framework Chakraborty et al.

(2023). [14]

5 Let Us Create An IoT Inside the AWS Cloud AWS Cloud Chakraborty et al.

(2023). [15]

6 Let Us Create a Physical IoT Device Using

AWS and ESP Module

AWS cloud, ESP Wifi

Module

Chakraborty et al.

(2023). [16]

7 Let Us Create Multiple IoT Device Controller

Using AWS, ESP32 And C#

AWS cloud, ESP32 Wifi

Module, C# language

Chakraborty et al.

(2023). [17]

8 Let Us Create Our Desktop IoT Soft-

Switchboard Using AWS, ESP32 and C#

AWS cloud, ESP32 Wifi

Module, C# language

Chakraborty et al.

(2023). [18]

9 Let Us Create an Alexa Skill for Our IoT

Device Inside the AWS Cloud

AWS Cloud, Alexa

developer console

Chakraborty et al.

(2023). [19]

10 Let Us Create A Lambda Function for Our

IoT Device In The AWS Cloud Using C#

AWS Lambda console,

AWS cloud, C#

language

Chakraborty et al.

(2023). [20]

11 Modbus Data Provider for Automation

Researcher Using C#

C# Language Chakraborty et al.

(2023). [21]

12 IoT-Based Industrial Debug Message Display

Using AWS, ESP8266, And C#

AWS cloud, ESP8266

module, And C#.

Chakraborty et al.

(2023). [22]

13 IoT-Based Switch Board for Kids Using ESP

Module And AWS

AWS cloud, ESP8266

module And C#

language

Chakraborty et al.

(2023). [23]

14 Let Us Create an Alexa-Enabled IoT Device

Using C#, AWS Lambda and ESP Module

AWS Lambda console,

ESP module, And C#

language

Chakraborty et al.

(2023). [24]

15 Alexa Enabled IoT Device Simulation Using

C# And AWS Lambda

AWS Lambda console

and C# language

Chakraborty et al.

(2023). [25]

16 CRUD Operation on WordPress Database

Using C# SQL Client

WordPress website, C#

SQL client module

Chakraborty et al.

(2023). [26]

17 CRUD Operation On WordPress Database

Using C# And REST API

WordPress website, C#,

and REST API

Chakraborty et al.

(2023). [27]

http://www.supublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 108

18 CRUD Operation on WordPress Posts From

C# over REST API

WordPress website, C#,

and REST API

Chakraborty et al.

(2023). [28]

19 CRUD Operation On WordPress Custom Post

Type (CPT) From C# Over REST API

WordPress website, C#,

and REST API

Chakraborty et al.

(2023). [29]

20 Let Us Build a WordPress Custom Post Type

(CPT)

WordPress website and

REST API

Chakraborty et al.

(2023). [30]

3. OBJECTIVES OF THE PAPER :

(1) To study the implementation procedure of the MQTT protocol pub-sub client using C# language.

(2) Review the performance of the free MQTT broker on the web.

(3) To analyze the response of available MQTT brokers.

(4) To compare the performance of the various free brokers.

(5) To evaluate the performance of our designed application.

(6) To test the protocol efficiency.

(7) To prove that our designed application performs better.

(8) To design valuable tools for the field of MQTT research projects.

(9) To develop excellent handy tools in the IoT communication field.

(10) To interpret the process flow of the MQTT protocol.

(11) To create complete one-stop debug tools for MQTT research.

4. METHODOLOGY :

Figure 1 depicts the project block diagram. The typical scenario is that the MQTT broker is situated in

the cloud to be accessible from anywhere. In the C#, to communicate with the MQTT broker, there is a

popular library called M2MQTT. If the subscriber is available, it forwards it to the subscriber; if not, it

just discards the topic data. On the other side, MQTT subscribers listen to the topic. When data is

available, it triggers the call-back function. We read the data from the callback function. The process

flow of the subscriber is the same as that of the publisher.

Fig. 1: The Project block diagram (Source: Author)

5. EXPERIMENTS :

We can use a free cloud MQTT broker or a locally installed MQTT broker to work with our designed

application. The following steps need to be followed to work with a local broker.

Install Local Mosquitto Broker:

1) Download mosquitto from https://mosquitto.org/download/. We used the Windows 64-bit version.

According to the operating system, we need to download the build version.

http://www.supublication.com/
https://mosquitto.org/download/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 109

2) Install using the downloaded setup file.

3) From the command line, open services. Find the “Mosquitto Broker.” Right-click on it and click on

start. Figure 2 depicts the services inside the service window.

Fig. 2: The mosquitto services inside the service window (Source: Author)

Test publisher and subscriber:

1) Open one command window.

2) Set prompt inside the mosquito broker install directory.

3) Type the command “mosquitto_sub -t switches.” It will subscribe to the “switches” topic.

4) Now again, open another command window.

5) Type the command “mosquitto_pub -r -t switches -m “on”

6) Figure 3 depicts the publish and subscribe topic.

Fig. 3: The publish and subscribe topic (Source: Author)

MQTT Application Creation in C#:

1) we will create a Windows desktop application GUI in C# like Figure 4.

http://www.supublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 110

Fig. 4: The application interface (Source: Author).

2) Download the project from https://github.com/sudipchakraborty/Let-Us-Build-a-MQTT-Pub-Sub-

Client-In-C-sharp.git or an expert researcher can create the interface on their own.

3) Extract the project. Open in the visual studio. We used Visual Studio Community Edition 2022.

4) Using the Nuget package manager, uninstall the M2MQTT package and install it again due to the

installation of missing components, which may not included inside the GitHub repository. Figure 5

depicts the MQTT package we used in our project.

Fig. 5: The C# library for MQTT (Source: Author)

5) Build and run the project. If the project successfully builds and runs the application, it looks like it

is in Figure 4. One common issue is that the MQTT broker needs to be running. Figure 6 depicts

the error. In that scenario, we must run the services for the local host MQTT broker.

6) Select the server we want to set as an MQTT broker. The “localhost” is the default broker address

when the application runs.

7) If we press the connect button, it will connect with the broker. If the connection is successful, the

status shows green.

8) Then press the start button from the publisher side.

http://www.supublication.com/
https://github.com/sudipchakraborty/Let-Us-Build-a-MQTT-Pub-Sub-Client-In-C-sharp.git
https://github.com/sudipchakraborty/Let-Us-Build-a-MQTT-Pub-Sub-Client-In-C-sharp.git

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 111

Fig. 6: The error on not running the MQTT broker

9) The published data should be visible inside the list box.

10) If the name of the subscribe is the same topic, the published topic will be displayed inside the

subscribe list box.

11) Press the “disconnect” button to disconnect from the broker. Change the broker and experiment.

12) The GUI controls are self-explanatory.

13) Some control just added. It is kept for the researcher to add code as their project needs.

14) The “Get response time” button can be implemented to study the broker's performance. It is the

time difference between publishing and subscribing to the same topic to the same application.

15) The “Show Graph” button can show the subscriber topic in the graph form to better understand the

sensor data. The C# experienced researcher can do it quickly.

6. RESULTS & DISCUSSIONS :

The data published interval of more than or equal to 500 milliseconds is good. We didn’t observe

noticeable changes if we set the publish interval to less than 500 milliseconds. We followed the receive

frequency of one second or more on the subscriber side. We also observed that the received topic

interval is not always steady where the publishing interval is constant. We tested several MQTT data

propagations over the internet. The final result is not much different compared to other brokers. The

MQTT is a promising communication channel. But we must consider many factors before deployment,

like server selection, broker or server bandwidth, network speed, etc. Overall, the good thing is that it

is easy to implement. From the programmer's perspective, it is a fast and easy prototyping

communication channel to integrate into their project.

7. ANALYSIS / COMPARISON OF RESULTS :

We tested practical sensor data transfer between two nodes. We tested locally. For the cloud server, we

used “broker.hivemq.com,” which is better than other servers. The local broker or server has the least

response time. However, a local server is not always feasible. We have an option for that. Using the

local server, we can utilize the tunnel to expose the other node over the internet. But overall, data

propagation depends on the data traffic present in the network. We might suggest not using it to trigger

critical devices like furnaces or life support devices because there are no guarantees that data will reach

the subscribed client node within the expected interval. It can store the log or sensor data in the server

or display parameters.

8. SUGGESTIONS / RECOMMENDATIONS :

We provide suggestions to improve the software or the knowledge base for the research work.

 A practical resource on MQTT using C# is: https://www.youtube.com/watch?v=1IJAfiBkp1E

 To expose the local MQTT broker to the net:

https://www.youtube.com/watch?v=HU04XApJxvk

http://www.supublication.com/
https://www.youtube.com/watch?v=HU04XApJxvk
https://www.youtube.com/watch?v=1IJAfiBkp1E
https://www.youtube.com/watch?v=HU04XApJxvk

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 112

 To get a list of free MQTT brokers, https://mntolia.com/10-free-public-private-mqtt-brokers-

for-testing-prototyping/

 We didn’t include the exception handle to keep the entire project easy to understand for the

new researcher. The researcher needs to add exceptions for the flawless running of the

application.

 Export features should be implemented to export the incoming subscribe topic, which is

displayed in the list box. It should facilitate export in various formats.

 We added a “Show Graph” button. The button's function is to show the incoming topic as a

graph. It will take the listbox data as input, parse it, and feed it to the graph control. Then, it

will be displayed inside the graph. We kept it to be implemented by the researcher if needed.

 We added one button called “Get Response Time.” The button's function is to measure the

response time of the broker, which is selected from the combo box.

9. CONCLUSION :

To work with the MQTT protocol, we need an excellent MQTT pub-sub client application to test with

various brokers and subscribe or publish topics. But most of the available free software, either time

limitations or some features, are available only in the premium version. Some research projects need

help to afford to purchase tools. Also, if we use the paid version, some features must be made available,

which is a common requirement of our researcher. So here we provide a way to create our own MQTT

debugger. We offer some noticeable research in this field, and the methodology demonstrates the

process flow of the MQTT communication channel. In the experiment, we provide a step-by-step guide

to building the application in our lab. We added some unique features that are not available in other

applications. We added some features through buttons, which we finally kept to be implemented by the

researcher as needed.

10. ACKNOWLEDGEMENT :

 I express my heartfelt gratitude to Dr. P. S. Aithal, my esteemed research supervisor, for his

invaluable guidance, supervision, encouragement, and unwavering support throughout this

research endeavour.

 Srinivas University deserves my thanks for generously providing the essential resources,

facilities, and assistance that significantly contributed to the success of this study.

 My sincere appreciation goes to my family for their continuous support, understanding, and

motivation during the research journey.

 Special thanks to my loving son, who consistently energized me when I faced challenges, and

my daughter, who remained a source of inspiration during moments of boredom.

 I acknowledge the collective help and encouragement from various remarkable individuals and

institutions, without whom this work would not have been possible.

11. LIMITATIONS :

We provide an excellent tool for the MQTT research work. Despite that, there are a couple of limitations

we listed below:

 For security or encryption, MQTT needs to be implemented into the communication part.

 User input validation needs to be implemented.

 There are several brokers available for IoT communication. We googled and added the server

combo box. Except for broker.hivemq.com, we didn’t get a good performance and could not

communicate easily. The researcher can investigate with other available free brokers or servers.

REFERENCES :

[1] Velinov, A., Mileva, A., Wendzel, S., & Mazurczyk, W. (2019). Covert channels in the MQTT-

based Internet of Things. IEEE Access, 7(1), 161899-161915. Google Scholar

[2] Longo, E., Redondi, A. E. C., Cesana, M., & Manzoni, P. (2022). BORDER: A benchmarking

framework for distributed MQTT brokers. IEEE Internet of Things Journal, 9(18), 17728-17740.

Google Scholar

http://www.supublication.com/
https://mntolia.com/10-free-public-private-mqtt-brokers-for-testing-prototyping/
https://mntolia.com/10-free-public-private-mqtt-brokers-for-testing-prototyping/
https://ieeexplore.ieee.org/abstract/document/8890870/
https://ieeexplore.ieee.org/abstract/document/9724236/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 113

[3] Hästbacka, D., Kannisto, P., & Kätkytniemi, A. (2022, October). Interoperability of OPC UA

PubSub with existing message broker integration architectures. In IECON 2022–48th Annual

Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE. Google Scholar

[4] Manzoni, P., Maniezzo, V., & Boschetti, M. A. (2022). Modeling Distributed MQTT Systems Using

Multicommodity Flow Analysis. Electronics, 11(9), 1498. Google Scholar

[5] Walker, M., von Arnim, C., Neubauer, M., Lechler, A., Riedel, O., & Verl, A. (2023, April).

Reflection-based Prototyping Framework for OPC UA Servers for Companion Specifications. In

2023 IEEE International Conference on Industrial Technology (ICIT) (pp. 1-6). IEEE. Google

Scholar

[6] Gupta, V., Khera, S., & Turk, N. (2021). MQTT protocol employing IOT based home safety system

with ABE encryption. Multimedia Tools and Applications, 80(2), 2931-2949. Google Scholar

[7] Gültunca, C., & Zaim, A. H. (2018). Examination and comparison of the communication protocols

on the application layer in iot. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 17(33), 41-50.

Google Scholar

[8] Al-Masri, E., Kalyanam, K. R., Batts, J., Kim, J., Singh, S., Vo, T., & Yan, C. (2020). Investigating

messaging protocols for the Internet of Things (IoT). IEEE Access, 8, 94880-94911. Google

Scholar

[9] Chang, H., Hao, F., Kodialam, M., Lakshman, T. V., Mukherjee, S., & Varvello, M. (2023). Towards

network-assisted publish–subscribe over wide area networks. Computer Networks, 231(1),

109702. Google Scholar

[10] Roffia, L., Morandi, F., Kiljander, J., D’Elia, A., Vergari, F., Viola, F., ... & Cinotti, T. S. (2016).

A semantic publish-subscribe architecture for the Internet of Things. IEEE Internet of Things

Journal, 3(6), 1274-1296. Google Scholar

[11] Chakraborty, S., & Aithal, P. S., (2022). A Practical Approach to GIT Using Bitbucket, GitHub

and SourceTree. International Journal of Applied Engineering and Management Letters (IJAEML),

6(2), 254-263. DOI: https://doi.org/10.5281/zenodo.7262771

[12] Chakraborty, S., & Aithal, P. S., (2022). How to make IoT in C# using Sinric Pro. International

Journal of Case Studies in Business, IT, and Education (IJCSBE), 6(2), 523- 530. DOI:

https://doi.org/10.5281/zenodo.7335167

[13] Chakraborty, S., & Aithal, P. S., (2022). Virtual IoT Device in C# WPF Using Sinric Pro.

International Journal of Applied Engineering and Management Letters (IJAEML), 6(2), 307-313.

DOI: https://doi.org/10.5281/zenodo.7473766

[14] Chakraborty, S., & Aithal, P. S., (2023). MVVM Demonstration Using C# WPF. International

Journal of Applied Engineering and Management Letters (IJAEML), 7(1), 1- 14. DOI:

https://doi.org/10.5281/zenodo.7538711

[15] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create An IoT Inside the AWS Cloud. International

Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(1), 211- 219. DOI:

https://doi.org/10.5281/zenodo.7726980

[16] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create a Physical IoT Device Using AWS and

ESP Module. International Journal of Management, Technology, and Social Sciences (IJMTS),

8(1), 224-233. DOI: https://doi.org/10.5281/zenodo.7779097

[17] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create Multiple IoT Device Controller Using

AWS, ESP32 And C#. International Journal of Applied Engineering and Management Letters

(IJAEML), 7(2), 27-34. DOI: https://doi.org/10.5281/zenodo.7857660

[18] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create Our Desktop IoT Soft-Switchboard Using

AWS, ESP32 and C#. International Journal of Case Studies in Business, IT, and Education

(IJCSBE), 7(3), 185-193. DOI: https://doi.org/10.5281/zenodo.8234036

http://www.supublication.com/
https://ieeexplore.ieee.org/abstract/document/9969039/
https://www.mdpi.com/2079-9292/11/9/1498
https://ieeexplore.ieee.org/abstract/document/10143130/
https://ieeexplore.ieee.org/abstract/document/10143130/
https://link.springer.com/article/10.1007/s11042-020-09750-4
https://dergipark.org.tr/en/pub/ticaretfbd/issue/55952/391807
https://ieeexplore.ieee.org/abstract/document/9090208/
https://ieeexplore.ieee.org/abstract/document/9090208/
https://www.sciencedirect.com/science/article/pii/S1389128623001470
https://ieeexplore.ieee.org/abstract/document/7505922/
https://doi.org/10.5281/zenodo.7262771
https://doi.org/10.5281/zenodo.7335167
https://doi.org/10.5281/zenodo.7473766
https://doi.org/10.5281/zenodo.7538711
https://doi.org/10.5281/zenodo.7726980
https://doi.org/10.5281/zenodo.7779097
https://doi.org/10.5281/zenodo.7857660
https://doi.org/10.5281/zenodo.8234036

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 9, No. 1, February 2024
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2024); www.supublication.com

PAGE 114

[19] Chakraborty, S. & Aithal, P. S. (2023). Let Us Create an Alexa Skill for Our IoT Device Inside the

AWS Cloud. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(2),

214-225. DOI: https://doi.org/10.5281/zenodo.7940237

[20] Chakraborty, S., & Aithal, P. S. (2023). Let Us Create A Lambda Function for Our IoT Device In

The AWS Cloud Using C#. International Journal of Management, Technology, and Social

Sciences (IJMTS), 8(2), 145-155. DOI: https://doi.org/10.5281/zenodo.7995727

[21] Chakraborty, S., & Aithal, P. S. (2023). Modbus Data Provider for Automation Researcher Using

C#. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(3), 1-7. DOI:

https://doi.org/10.5281/zenodo.8162680

[22] Chakraborty, S., & Aithal, P. S. (2023). IoT-Based Industrial Debug Message Display Using AWS,

ESP8266 And C#. International Journal of Management, Technology, and Social Sciences

(IJMTS), 8(3), 249-255. DOI: https://doi.org/10.5281/zenodo.8250418

[23] Chakraborty, S., & Aithal, P. S. (2023). IoT-Based Switch Board for Kids Using ESP Module And

AWS. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(3), 248-

254. DOI: https://doi.org/10.5281/zenodo.8285219

[24] Chakraborty, S., & Aithal, P. S. (2023). Let Us Create an Alexa-Enabled IoT Device Using C#,

AWS Lambda and ESP Module. International Journal of Management, Technology, and Social

Sciences (IJMTS), 8(3), 256-261. DOI: https://doi.org/10.5281/zenodo.8260291

[25] Chakraborty, S., & Aithal, P. S. (2023). Alexa Enabled IoT Device Simulation Using C# And AWS

Lambda. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(3), 359-

368. DOI: https://doi.org/10.5281/zenodo.8329375

[26] Chakraborty, S., & Aithal, P. S. (2023). CRUD Operation on WordPress Database Using C# SQL

Client. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(4), 138-

149. DOI: https://doi.org/10.5281/zenodo.10162719

[27] Chakraborty, S., & Aithal, P. S., (2023). CRUD Operation On WordPress Database Using C# And

REST API. International Journal of Applied Engineering and Management Letters (IJAEML),

7(4), 130-138. DOI: https://doi.org/10.5281/zenodo.10197134

[28] Chakraborty, S., & Aithal, P. S., (2023). CRUD Operation on WordPress Posts From C# over

REST API. International Journal of Management, Technology, and Social Sciences (IJMTS), 8(4),

223-231. DOI: https://doi.org/10.5281/zenodo.10264407

[29] Chakraborty, S. & Aithal, P. S. (2023). CRUD Operation On WordPress Custom Post Type (CPT)

From C# Over REST API. International Journal of Case Studies in Business, IT, and Education

(IJCSBE), 7(4), 323-331. DOI: https://doi.org/10.5281/zenodo.10408545

[30] Chakraborty, S. & Aithal, P. S. (2023). Let Us Build a WordPress Custom Post Type (CPT).

International Journal of Applied Engineering and Management Letters (IJAEML), 7(4), 259-266.

DOI: https://doi.org/10.5281/zenodo.10440842

http://www.supublication.com/
https://doi.org/10.5281/zenodo.7940237
https://doi.org/10.5281/zenodo.7995727
https://doi.org/10.5281/zenodo.8162680
https://doi.org/10.5281/zenodo.8250418
https://doi.org/10.5281/zenodo.8285219
https://doi.org/10.5281/zenodo.8260291
https://doi.org/10.5281/zenodo.8329375
https://doi.org/10.5281/zenodo.10162719
https://doi.org/10.5281/zenodo.10197134
https://doi.org/10.5281/zenodo.10264407
https://doi.org/10.5281/zenodo.10408545
https://doi.org/10.5281/zenodo.10440842

